If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+23x+9=0
a = 2; b = 23; c = +9;
Δ = b2-4ac
Δ = 232-4·2·9
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{457}}{2*2}=\frac{-23-\sqrt{457}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{457}}{2*2}=\frac{-23+\sqrt{457}}{4} $
| 1.75m=4-30 | | x-4(-7/5)=9 | | x(x-1)-5(×-2)=2 | | 3(2x+5)=12x+6 | | 2=0.3/g | | -14=k+2/3 | | 1.75m=4+30 | | -28/36=-7/9t | | 5*y=2-5 | | 16x+96=62 | | 15=0.2h | | 3/4x-1/3x=1/6x+1 | | 4=1.75-30m | | 4x÷5=20 | | 7+2x-3=2(x-2) | | 4b+2(b+1)=0 | | 5y+2-3y=2y-9 | | 4m=1.75 | | -6(x-19)=-36 | | 0.35(60)+0.15z=0.20(60+z) | | -28=-7(3x+4)=2x | | 6(z+1)-7+4z+z=0 | | X²-17x+70=0 | | 15x^2=−11x+14 | | 4=1.75+30m | | 1/3(r+9)=-12 | | -9.3=d-5.3 | | 2(x+5)+3x=2x+16 | | 4=1.75m+30 | | 3(x+5)=5/30 | | 6-3k+6k+6=k+6 | | 5y+2-3y=2y-0 |